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Driven interfaces in quenched disorder at critical depinning
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We reexamine the problem of interfaces driven by a bulk force in quenched disorder. We find that the
Bruinsma-Aeppli equation is not compatible with the physical Hamiltonian by having one extra symme-
try. We discuss the definition of the critical depinning and show that at criticality, equations with and
without the nonlinear term have very different scalings. A stretched exponential law is found for the

derivative distribution when lateral growth is absent.
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Interfaces in random media driven by bulk forces have
attracted much interest in various domains in the last
years. Bruinsma and Aeppli [1] first started the subject
by introducing a partial differential equation in their
study of the two-dimensional (2D) random field domain
wall problem. Koplik and Levine [2] applied the same
equation to a much larger scale problem: the driven
water-oil interface in porous rocks. The problem has re-
cently been revived in the connection of interface growth
phenomena [3], especially in experimental realizations of
interface growth [4-6].

Significant progress has been achieved in understand-
ing the critical scaling behavior of prototype lattice mod-
els of driven interfaces in quenched disorder. The sta-
tionary interface configurations were shown to be related
to directed percolation clusters [7,8]. Later, Olami, Pro-
caccia, and Zeitak [9] and Tang and Leschhorn [10] were
able to derive almost all other exponents from ) alone,
using a scaling theory. In this article we shall compare
two interface equations: the first is the Edwards-
Wilkinson (EW) equation in quenched disorder, the
second is the same but with an extra nonlinear term.

Let us start by considering the Bruinsma-Aeppli Ham-
iltonian in d =1+ 1 dimensions:

— (Y 2
H[h(x),f] fdx2 [VA (x)]

+ [ax ["th0—p1an, @

where h (x) is the domain wall’s position. The first term
on the right hand side is due to constant surface tension
v, the second term represents the contribution from ran-
dom pinning in the bulk below the domain wall, and f is
a constant representing the external driving force. If we
ignore thermal noise, traditionally [1] we would have the
following dynamic equation for & (x,¢):

8H [h,f]
oh , (2)

which leads to the well-known Bruinsma-Aeppli-Koplik-
Levine (BAKL) equation

h(x,t)=vV2h (x,t)—n(h,x)+f , (3)

h(x,t)=—

which is at the basis of much of the current research.
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We want to point our here that Eq. (3) is inadequate to
describe interfaces driven by an external bulk force. To
see this, note that Eq. (3) enjoys the symmetry

h'(x)=h(x)+Cx , 4)

C being a constant, where for independently distributed
disorder statistical equivalence n(h’,x)=mn(h,x) is as-
sumed. However, this symmetry is not allowed by the
term proportional to f in Eq. (1), as can easily be verified.
How can the unsolicited symmetry be smuggled into our
final equation? We shall see that it is Eq. (2) which is at
fault. ‘

It has been known for some time [11,12] that the quan-
tities on both sides of Eq. (2) do not point in the same
direction: in the 4 -x plane, & is in the vertical direction
(that of k), while —8H [h]/6h is in the local normal
direction to the interface. To establish the correct rela-
tionship between the two, one should consider either
equating the vertical projections

}2=—\/1+|Vh|2§1%fl , (5)

or, which is totally equivalent, equating their projections
in the normal direction. This was first observed in the
kinetic interface context [11,12] but should also be valid
for the quenched disorder case. Like the Hamiltonian
(1), Eq. (5) does not obey the symmetry transformation
(4). To leading order we therefore obtain

h(x,t)=vV*h +A|Vh|*—n(h,x)+ f , (6)

where a=2, and we have deliberately introduced a
different constant A and left undecided its physical value.

First of all one should learn if the two equations give
equivalent scaling behaviors. Should the answer be in the
affirmative, then we should prefer the simpler equation
(3) over the more complete one (6). Indeed, past work
[13,14] shows that in the strong driving regime, i.e., in
the unpinned phase, both scale the same way, beyond
crossover lengths, and the exponent is the traditional one
[15]. This is because that nonlinear term is dynamically
generated. Near and at the critical depinning transition,
the situation is less clear. One early work [16] suggests
that both scale in the same way at criticality. Recent nu-

1686 ©1995 The American Physical Society



51 DRIVEN INTERFACES IN QUENCHED DISORDER AT ...

merical work with various interface models shows, how-
ever, that the presence of the nonlinear term makes a big
difference in scaling behavior: Eq. (3) results in a super-
rough surface (y > 1), while Eq. (6) yields the well defined
self-affine exponent y =~0.63, and can be well explained by
relating to the directed percolation problem [17,18].

Besides the two models discussed above, there are also
two different approaches to the critical depinning transi-
tion. The traditional one is to carefully choose a suitable
driving force f such that the interface just overcomes
quenched random pinning forces. This value of f is
called the critical force f.. A recent approach inspired
by Sneppen [19] by construction only moves a single site
facing the least resistance. We shall argue that, strictly
speaking, in finite systems no such a constant f, exists
and any presumed critical value of the driving force
necessarily is above criticality. Below we define criticali-
ty as the slowest possible interface motion by suitably ad-
justing the instantaneous driving force f, and we shall see
that in real experiments this definition of criticality is
natural and realizable.

Let us reconsider one typical interface displacement
experiment [3,4]. Pressured water is injected into a
porous medium, and the water-air interface advances.
Imagine that we want to approach the critical depinning
by pumping water so slowly that at most one site on the
interface is moving forward. Each time when there is a
breakthrough there is a sudden volume gain, the pressure
field experiences a temporary drop, and the interface
stops advancing. However, water is being still slowly
pumped in and the pressure field builds up again until
another site with least resistance breaks through and this
process repeats itself. It is well known that experimental-
ly it is easier to maintain the constant flow pumping rate
than to maintain the constant pressure, therefore the
above definition happens to be the most experimentally
relevant. This scenario is the slowest one, and thus prop-
erly defines criticality, very much in the spirit of self-
organized criticality (SOC) [20]. The critical driving
force is uniform in space but a function of time, as illus-
trated in Fig. 1.

The instantaneous critical driving force fluctuates
around a constant value f, if averaged over a long time.
Needless to say, the amplitude of the fluctuations is ex-

fe(t)

FIG. 1. Critical driving force f.(¢) vs t (solid line). The
dashed line represents the average value f, of f.(z) over long
times. The critical driving force reduces to f, in the limit of an
infinite large system.
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tremely small for large systems. In fact it can be readily
estimated as

Af =f()—=fol~L

where £ is one of the directed percolation exponents, and
L is the system size in the transversal direction. f, is the
closest equivalent to the traditional critical depinning
force f., however, it cannot be used to drive an interface
since there is always a time in which the interface re-
quires a stronger push to overcome pinning. For that
reason any cleverly chosen constant f would not do the
job. In order to be in the depinning phase, a constant
driving force necessarily has to lie above the fluctuation
region. However, such a value is not really critical, since
for much of the time driving is over criticality by an
amount of about Af.

Having defined the model and the critical depinning,
let us investigate whether the above two equations share
the same scaling behavior at criticality. For Eq. (6) with
a=2, we have clearly confirmed the familiar roughening
exponent ¥ =~0.63, agreeing with previous results on simi-
lar models [7-10]. Olami, Procaccia, and Zeitak [17] first
considered such a nonlinear equation analytically as well
as numerically. They derived the above Y using a direct-
ed percolation related scaling theory. In our own simula-
tion, we found that the directed percolation universality
class is very large. As a matter of fact, we found that any
nonlinear term (a=1) which violates the symmetry (4)
will make the model scale in the same universality class.

Recently it has been reported by Roux and Hansen
[21] that Eq. (3) scales super-roughly, i.e., x¥ = 1.20; this is
also reported by Olami, Procaccia, and Zeitak [17]. We
confirm their results and observe that the interface
configurations are actually well defined self-affine fractals
with the intrinsical exponent y,==0.85 for a fixed system
size L, as also reported in [21]. Traditionally it is as-
sumed that both the height-height correlation function

G(nN=V{[h(x,t)—h(x +r1)]*) (8)

A Y

and

W(L)=

x=1

| L 12
<f b [h(x,t)—(h(x,t))]2>] ©)

scale the same wayj, i.e.,
G(rn~r, w(L)~L", (10)

where Y;=x, and { ) denotes the sample average and
O0=<r=L. For strictly self-affine interfaces with y, <1,
this can be rigorously verified. Indeed for the nonlinear
equation (6) both correlations yield the same roughening
exponent ¥, =YX,==0.63, as we have verified numerically.
The width W(L) dependence on the system size L can
have super-rough scaling (x,> 1), this is already known
in studying the following equations by Wolf and Villain
[22] and Das Sarma and Tamborenea [23], among others:

h(x,t)=—vV*h (x,t)+7(x,1) . (11)

Super-rough interfaces have diverging derivatives.
Therefore the width W (L) does not represent the self-
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affine scaling nature since the basic step is a diverging
quantity [21]

|h(x +1,6)—h(x,t)|~LE B>0.

That super-rough scaling with two roughening exponents
is not contradictory [24], since the height-height correla-
tion function should be expressed as
—x,

G(r)~riiL*? (12)

If the correlation length 7 coincides with the system size
L, we recover G(r =L)=W (L). In Fig. 2 we report the
scaling results for both the self-affine roughening ex-
ponents Y;~=0.85 and ),~1.20, in agreement with Roux
and Hansen [21].

We set out to study the nature of such diverging
derivatives. In Fig. 3 we plot the histogram of
Ah =|h(x +1,t)—h(x,t)| for the interfaces in the sta-
tionary phase. We find that the distribution p (Ah) does
not follow a power law, as in the Lévy flight case [25];
rather it follows a stretched exponential law:

p(Ah)~exp{— A (AR)"} , (13)

where A is a constant and y is estimated to be
¥ =1.7510.06. This type of stretched exponential law
has recently attracted considerable attention [26]; Krug
[27] recently found similar laws for other super-rough
surfaces.

Finally, we want to point out an instability inherent in
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FIG. 2. Scaling of the correlation functions W (L) and G (r)
of the fluctuating interface for the EW equation with quenched
noise in the saturation phase. We find two different scalings. (a)
Plot of W(L) vs L(0O). L is the lattice size (d =1+1). (b) Plot
of G(r) vs r(+). ris the width of a window in a lattice of am-
plitude L, (r =L). The super-rough interface growth is evident
from the scaling of W(L): x,=1.20%0.01. The scaling of G (r)
shows the self-affine nature of the interface: we find
X1=0.85+0.02.
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FIG. 3. Histogram of the distribution of Ak for the interface
at the stationary phase. The function —In(p(Ah)) vs Ah is
shown, on a double-log scale. The numerical estimated value of
the stretched exponent y (see text) is ¥ ~1.75+0.06.

the nonlinear equation (6), which makes the equation as it
stands ill defined. Suppose that at a given moment a rare
event makes the interface at one site rougher than else-
where. Then the nonlinear term suddenly becomes dom-
inant over the surface tension term. As a consequence,
the minimal resistance will always happen at this site,
making the interface infinitely rough.

Let us consider the range where A0 and v+0. To
choose the minimal resistance we have to examine

f(x,t)=n(x,h)—vV?h (x,t)—A|VhA (x,1)|* . (14)

To illustrate this hidden instability, let us consider the
simplest case in d =1+1 dimensions: A (x,t)=0 on all
the sites except xo, where h (x4,2)=&>0. All the follow-
ing considerations can be easily generalized to a d-
dimensional system as well.

It is straightforward to show that the disorder aver-
aged value [{7(h,x))=0]

(f(xg,2)) =2vE—AE® (15)

represents the bias on the chance that the site x, will be
chosen to have minimal resistance. We have to compare
this bias to that of its neighbors:

(f(xoil,t))Z—v§—%§°’, (16)

while it is zero in other places. Therefore the relative
bias for the site x is

A

DE)=(f(x0,t)—f(xoET1))= 3v—3ga‘1 ]5 . 17

We see that for small values of £ the bias ®(&) is positive,
thus the site at x, has less of a chance to move forward
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than the sites at x,+1. Hence the interface is stable. On
the other hand, for § larger than a critical value
v =
I3 y (a=2),

the right-hand side of (18) becomes negative and the
chance to advance for the site x is enhanced, i.e., it is
favorable to have §—~£+1. For a>1 this is devastating
since § keeps growing. We depict the bias function ®(§)
in Fig. 4 for a=2. The region of £ where ®(§) is positive
is declared safe. In the ®(§) negative region the uncon-
trolled growth of £ at the site x prevails.

Conclusion: in this article we have reexamined the
problem of driven interfaces in quenched disorder. We
found that the traditional interface equation (EW) is in-
compatible with the physical Hamiltonian. A correct
treatment necessitates the introduction of a nonlinear
term for the interface equation. We also have introduced
a precise definition of the critical depinning transition
and argued that a fluctuating driving force is experimen-
tally realistic and theoretically appropriate. Interfaces

$(¢)

FIG. 4. Shape of the bias function ®(&) vs £ in the simplest
case a=2 and d =1+1. The critical value £* separates stable
and unstable regions.

scale very differently with and without the nonlinear
term, and the latter is shown to be super-rough. A
stretched exponential law is found for the distribution of
the jumps Ah.
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